Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 18(1): e0011885, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190404

RESUMEN

Dengue is a mosquito-borne disease that has spread to over 100 countries. Its symptoms vary from the relatively mild acute febrile illness called dengue fever to the much more severe dengue shock syndrome. Dengue is caused by dengue virus (DENV), which belongs to the Flavivirus genus of the family Flaviviridae. There are four serotypes of DENV, i.e., DENV1 to DENV4, and each serotype is divided into distinct genotypes. Thailand is an endemic area where all four serotypes of DENV co-circulate. Genome sequencing of the DENV2 that was isolated in Thailand in 2016 and 2017 revealed the emergence of the Cosmopolitan genotype and its co-circulation with the Asian-I genotype. However, it was unclear whether different genotypes have different levels of viral replication and pathogenicity. Focus-forming assay (FFA) results showed that clinical isolates of these genotypes differed in focus size and proliferative capacity. Using circular polymerase extension reaction, we generated parental and chimeric viruses with swapped genes between these two DENV2 genotypes, and compared their focus sizes and infectivity titers using FFA. The results showed that the focus size was larger when the structural proteins and/or non-structural NS1-NS2B proteins were derived from the Cosmopolitan virus. The infectious titers were consistent with the focus sizes. Single-round infectious particle assay results confirmed that chimeric viruses with Cosmopolitan type structural proteins, particularly prM/E, had significantly increased luciferase activity. Replicon assay results showed that Cosmopolitan NS1-NS2B proteins had increased reporter gene expression levels. Furthermore, in interferon-receptor knock-out mice, viruses with Cosmopolitan structural and NS1-NS2B proteins had higher titers in the blood, and caused critical disease courses. These results suggested that differences in the sequences within the structural and NS1-NS2B proteins may be responsible for the differences in replication, pathogenicity, and infectivity between the Asian-I and Cosmopolitan viruses.


Asunto(s)
Virus del Dengue , Dengue , Animales , Ratones , Dengue/epidemiología , Virulencia , Serogrupo , Genotipo , Replicación Viral
3.
Viruses ; 15(9)2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37766380

RESUMEN

After publication of the article, the authors received comments from a member of the Viruses editorial board who is an expert in the field of adenovirus concerning figures and references that should be included in the paper [...].

4.
Microorganisms ; 11(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37317240

RESUMEN

Dengue virus (DENV), which has circulated in Vietnam for several decades, has multiple serotypes and genotypes. A 2019 dengue outbreak resulted in a larger number of cases than any other outbreak. We conducted a molecular characterization using samples collected in 2019-2020 from dengue patients in Hanoi and nearby cities located in northern Vietnam. The circulating serotypes were DENV-1 (25%, n = 22) and DENV-2 (73%, n = 64). Phylogenetic analyses revealed that all DENV-1 (n = 13) were genotype I and clustered to local strains circulating during the previous outbreak in the 2017, whereas DENV-2 consisted of two genotypes: Asian-I (n = 5), related to local strains from 2006-2022, and cosmopolitan (n = 18), the predominant genotype in this epidemic. The current cosmopolitan virus was identified as having an Asian-Pacific lineage. The virus was closely related to strains in other recent outbreaks in Southeast Asian countries and China. Multiple introductions occurred in 2016-2017, which were possibly from maritime Southeast Asia (Indonesia, Singapore, and Malaysia), mainland Southeast Asia (Cambodia and Thailand), or China, rather than from an expansion of localized Vietnamese cosmopolitan strains that were previously detected in the 2000s. We also analyzed the genetic relationship between Vietnam's cosmopolitan strain and recent global strains reported from Asia, Oceania, Africa, and South America. This analysis revealed that viruses of Asian-Pacific lineage are not restricted to Asia but have spread to Peru and Brazil in South America.

5.
Viruses ; 15(6)2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37376670

RESUMEN

Metagenomics has demonstrated its capability in outbreak investigations and pathogen surveillance and discovery. With high-throughput and effective bioinformatics, many disease-causing agents, as well as novel viruses of humans and animals, have been identified using metagenomic analysis. In this study, a VIDISCA metagenomics workflow was used to identify potential unknown viruses in 33 fecal samples from asymptomatic long-tailed macaques (Macaca fascicularis) in Ratchaburi Province, Thailand. Putatively novel astroviruses, enteroviruses, and adenoviruses were detected and confirmed by PCR analysis of long-tailed macaque fecal samples collected from areas in four provinces, Ratchaburi, Kanchanaburi, Lopburi, and Prachuap Khiri Khan, where humans and monkeys live in proximity (total n = 187). Astroviruses, enteroviruses, and adenoviruses were present in 3.2%, 7.5%, and 4.8% of macaque fecal samples, respectively. One adenovirus, named AdV-RBR-6-3, was successfully isolated in human cell culture. Whole-genome analysis suggested that it is a new member of the species Human adenovirus G, closely related to Rhesus adenovirus 53, with evidence of genetic recombination and variation in the hexon, fiber, and CR1 genes. Sero-surveillance showed neutralizing antibodies against AdV-RBR-6-3 in 2.9% and 11.2% of monkeys and humans, respectively, suggesting cross-species infection of monkeys and humans. Overall, we reported the use of metagenomics to screen for possible new viruses, as well as the isolation and molecular and serological characterization of the new adenovirus with cross-species transmission potential. The findings emphasize that zoonotic surveillance is important and should be continued, especially in areas where humans and animals interact, to predict and prevent the threat of emerging zoonotic pathogens.


Asunto(s)
Infecciones por Adenoviridae , Adenovirus de los Simios , Infecciones por Enterovirus , Enterovirus , Animales , Humanos , Macaca fascicularis , Adenovirus de los Simios/genética , Tailandia/epidemiología , Macaca mulatta , Adenoviridae , Infecciones por Adenoviridae/veterinaria , Heces , Filogenia
6.
Viruses ; 15(5)2023 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-37243230

RESUMEN

Dengue virus (DENV) infections have unpredictable clinical outcomes, ranging from asymptomatic or minor febrile illness to severe and fatal disease. The severity of dengue infection is at least partly related to the replacement of circulating DENV serotypes and/or genotypes. To describe clinical profiles of patients and the viral sequence diversity corresponding to non-severe and severe cases, we collected patient samples from 2018 to 2022 at Evercare Hospital Dhaka, Bangladesh. Serotyping of 495 cases and sequencing of 179 cases showed that the dominant serotype of DENV shifted from DENV2 in 2017 and 2018 to DENV3 in 2019. DENV3 persisted as the only representative serotype until 2022. Co-circulation of clades B and C of the DENV2 cosmopolitan genotype in 2017 was replaced by circulation of clade C alone in 2018 with all clones disappearing thereafter. DENV3 genotype I was first detected in 2017 and was the only genotype in circulation until 2022. We observed a high incidence of severe cases in 2019 when the DENV3 genotype I became the only virus in circulation. Phylogenetic analysis revealed clusters of severe cases in several different subclades of DENV3 genotype I. Thus, these serotype and genotype changes in DENV may explain the large dengue outbreaks and increased severity of the disease in 2019.


Asunto(s)
Virus del Dengue , Dengue , Humanos , Virus del Dengue/genética , Dengue/epidemiología , Filogenia , Bangladesh/epidemiología , Serogrupo , Genotipo
7.
Viruses ; 15(4)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37112962

RESUMEN

Dengue virus (DENV) is an arbovirus whose transmission cycle involves disparate hosts: humans and mosquitoes. The error-prone nature of viral RNA replication drives the high mutation rates, and the consequently high genetic diversity affects viral fitness over this transmission cycle. A few studies have been performed to investigate the intrahost genetic diversity between hosts, although their mosquito infections were performed artificially in the laboratory setting. Here, we performed whole-genome deep sequencing of DENV-1 (n = 11) and DENV-4 (n = 13) derived from clinical samples and field-caught mosquitoes from the houses of naturally infected patients, in order to analyze the intrahost genetic diversity of DENV between host types. Prominent differences in DENV intrahost diversity were observed in the viral population structure between DENV-1 and DENV-4, which appear to be associated with differing selection pressures. Interestingly, three single amino acid substitutions in the NS2A (K81R), NS3 (K107R), and NS5 (I563V) proteins in DENV-4 appear to be specifically acquired during infection in Ae. aegypti mosquitoes. Our in vitro study shows that the NS2A (K81R) mutant replicates similarly to the wild-type infectious clone-derived virus, while the NS3 (K107R), and NS5 (I563V) mutants have prolonged replication kinetics in the early phase in both Vero and C6/36 cells. These findings suggest that DENV is subjected to selection pressure in both mosquito and human hosts. The NS3 and NS5 genes may be specific targets of diversifying selection that play essential roles in early processing, RNA replication, and infectious particle production, and they are potentially adaptive at the population level during host switching.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Animales , Humanos , Virus del Dengue/genética , Mosquitos Vectores , Variación Genética
8.
PeerJ ; 10: e14419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518286

RESUMEN

Background: Ongoing outbreaks of H5N1 highly pathogenic avian influenza (HPAI) viruses and the emergence of the genetic-related hemagglutinin (HA) gene of reassortant H5Nx viruses currently circulating in wild birds and poultries pose a great global public health concern. In this study, we comprehensively analyzed the genetic evolution of Thai H5N1 HA and neuraminidase (NA) genes between 2003 and 2010. The H5N1 Thailand virus clade 2.3.4 was also genetically compared to the currently circulating clade 2.3.4.4 of H5Nx viruses. Methods: Full-length nucleotide sequences of 178 HA and 143 NA genes of H5N1 viruses circulating between 2003 and 2010 were phylogenetically analyzed using maximum likelihood (ML) phylogenetic construction. Bayesian phylogenetic trees were reconstructed using BEAST analysis with a Bayesian Markov chain Monte Carlo (MCMC) approach. The maximum clade credibility (MCC) tree was determined, and the time of the most recent common ancestor (tMRCA) was estimated. The H5N1 HA nucleotide sequences of clade 2.3.4 Thailand viruses were phylogenetically analyzed using ML phylogenetic tree construction and analyzed for nucleotide similarities with various subtypes of reassortant H5Nx HA clade 2.3.4.4. Results: ML phylogenetic analysis revealed two distinct HA clades, clade 1 and clade 2.3.4, and two distinct NA groups within the corresponding H5 clade 1 viruses. Bayesian phylogenetic reconstruction for molecular clock suggested that the Thai H5N1 HA and NA emerged in 2001.87 (95% HPD: 2001.34-2002.49) and 2002.38 (95% HPD: 2001.99-2002.82), respectively, suggesting that the virus existed before it was first reported in 2004. The Thai H5N1 HA clade 2.3.4 was grouped into corresponding clades 2.3.4, 2.3.4.1, 2.3.4.2, and 2.3.4.3, and shared nucleotide similarities to reassortant H5Nx clade 2.3.4.4 ranged from 92.4-96.8%. Phylogenetic analysis revealed monophyletic H5Nx clade 2.3.4.4 evolved from H5N1 clade 2.3.4. Conclusion: H5N1 viruses existed, and were presumably introduced and circulated in avian species in Thailand, before they were officially reported in 2004. HA and NA genes continuously evolved during circulation between 2004 and 2010. This study provides a better understanding of genetic evolution with respect to molecular epidemiology. Monitoring and surveillance of emerging variants/reassortants should be continued.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Subtipo H5N1 del Virus de la Influenza A/genética , Hemaglutininas , Gripe Aviar/epidemiología , Neuraminidasa/genética , Filogenia , Tailandia/epidemiología , Teorema de Bayes , Aves , Evolución Molecular
9.
Virol J ; 19(1): 169, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36303183

RESUMEN

BACKGROUND: Dengue is an arboviral disease that has a large effect on public health in subtropical and tropical countries. Rapid and accurate detection of dengue infection is necessary for diagnosis and disease management. We previously developed highly sensitive immunochromatographic devices, the TKK 1st and TKK 2nd kits, based on dengue virus (DENV) nonstructural protein 1 detection. However, these TKK kits were evaluated mainly using DENV type 2 clinical specimens collected in Bangladesh, and further validation using clinical specimens of other serotypes was needed. METHODS: In the present study, one of the TKK kits, TKK 2nd, was evaluated using 10 DENV-1, 10 DENV-2, 4 DENV-3, 16 DENV-4, and 10 zika virus-infected clinical specimens collected in Bangkok, Thailand. RESULTS: The TKK 2nd kit successfully detected all four DENV serotypes in patient serum specimens and did not show any cross-reactivities against zika virus serum specimens. The IgM and/or IgG anti-DENV antibodies were detected in seven serum specimens, but did not seem to affect the results of antigen detection in the TKK 2nd kit. CONCLUSION: The results showed that the TKK 2nd kit successfully detected all four DENV serotypes in clinical specimens and confirmed the potential of the kit for dengue diagnosis in endemic countries.


Asunto(s)
Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Dengue/diagnóstico , Serogrupo , Proteínas no Estructurales Virales/genética , Anticuerpos Antivirales , Tailandia , Sensibilidad y Especificidad , Infección por el Virus Zika/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos
10.
Trop Med Infect Dis ; 7(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35324585

RESUMEN

Influenza is one of the most common respiratory virus infections. We analyzed hemagglutinin (HA) and neuraminidase (NA) gene segments of viruses isolated from influenza patients who visited Evercare Hospital Dhaka, Bangladesh, in early 2020 immediately before the coronavirus disease 2019 (COVID-19) pandemic. All of them were influenza virus type A (IAV) H1N1pdm. Sequence analysis of the HA segments of the virus strains isolated from the clinical specimens and the subsequent phylogenic analyses of the obtained sequences revealed that all of the H1N1pdm recent subclades 6B.1A5A + 187V/A, 6B.1A5A + 156K, and 6B.1A5A + 156K with K209M were already present in Bangladesh in January 2020. Molecular clock analysis results suggested that the subclade 6B.1A5A + 156K emerged in Denmark, Australia, or the United States in July 2019, while subclades 6B.1A5A + 187V/A and 6B.1A5A + 156K with K209M emerged in East Asia in April and September 2019, respectively. On the other hand, sequence analysis of NA segments showed that the viruses lacked the H275Y mutation that confers oseltamivir resistance. Since the number of influenza cases in Bangladesh is usually small between November and January, these results indicated that the IAV H1N1pdm had spread extremely rapidly without acquiring oseltamivir resistance during a time of active international flow of people before the COVID-19 pandemic.

11.
Microorganisms ; 10(2)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35208808

RESUMEN

The Indian Ocean Lineage (IOL) of the chikungunya virus (CHIKV) East/Central/South African (ECSA) genotype, which originated in Kenya, spread to the Indian ocean and the Indian subcontinent, and then expanded through Southeast Asia in the previous decade. It carried an adaptive mutation E1-A226V, which enhances CHIKV replication in Aedes albopictus. However, the IOL CHIKV of the most recent outbreaks during 2016-2020 in India, Pakistan, Bangladesh, the Maldives, Myanmar, Thailand, and Kenya lacked E1-A226V but carried E1-K211E and E2-V264A. Recent CHIKV genome sequences of the Maldives and Thailand were determined, and their phylogenetic relationships were further investigated together with IOL sequences reported in 2004-2020 in the database. The results showed that the ancestral IOLs diverged to a sub-lineage E1-K211E/E2-V264A, probably in India around 2008, and caused sporadic outbreaks in India during 2010-2015 and in Kenya in 2016. The massive expansion of this new sub-lineage occurred after the acquisition of E1-I317V in other neighboring and remote regions in 2014-2020. Additionally, the phylogenetic tree indicated that independent clades formed according to the geographical regions and introduction timing. The present results using all available partial or full sequences of the recent CHIKVs emphasized the dynamics of the IOL sub-lineages in the Indian subcontinent, Southeast Asia, and Eastern Africa.

12.
Sensors (Basel) ; 21(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34883813

RESUMEN

Four serotypes of dengue virus (DENV), type 1 to 4 (DENV-1 to DENV-4), exhibit approximately 25-40% of the difference in the encoded amino acid residues of viral proteins. Reverse transcription of RNA extracted from specimens followed by PCR amplification is the current standard method of DENV serotype determination. However, since this method is time-consuming, rapid detection systems are desirable. We established several mouse monoclonal antibodies directed against DENV non-structural protein 1 and integrated them into rapid DENV detection systems. We successfully developed serotype-specific immunochromatography systems for all four DENV serotypes. Each system can detect 104 copies/mL in 15 min using laboratory and clinical isolates of DENV. No cross-reaction between DENV serotypes was observed in these DENV isolates. We also confirmed that there was no cross-reaction with chikungunya, Japanese encephalitis, Sindbis, and Zika viruses. Evaluation of these systems using serum from DENV-infected individuals indicated a serotype specificity of almost 100%. These assay systems could accelerate both DENV infection diagnosis and epidemiologic studies in DENV-endemic areas.


Asunto(s)
Virus del Dengue , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Antígenos Virales , Cromatografía de Afinidad , Dengue/diagnóstico , Ensayo de Inmunoadsorción Enzimática , Ratones , Sensibilidad y Especificidad , Serogrupo , Proteínas no Estructurales Virales
13.
PLoS One ; 16(9): e0257460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34520486

RESUMEN

Dengue is hyperendemic in most Southeast Asian countries including Thailand, where all four dengue virus serotypes (DENV-1 to -4) have circulated over different periods and regions. Despite dengue cases being annually reported in all regions of Thailand, there is limited data on the relationship of epidemic DENV infection between humans and mosquitoes, and about the dynamics of DENV during outbreaks in the northeastern region. The present study was conducted in this region to investigate the molecular epidemiology of DENV and explore the relationships of DENV infection in humans and in mosquitoes during 2016-2018. A total of 292 dengue suspected patients from 11 hospitals and 902 individual mosquitoes (at patient's houses and neighboring houses) were recruited and investigated for DENV serotypes infection using PCR. A total of 103 patients and 149 individual mosquitoes were DENV -positive. Among patients, the predominant DENV serotypes in 2016 and 2018 were DENV-4 (74%) and DENV-3 (53%) respectively, whereas in 2017, DENV-1, -3 and -4 had similar prevalence (38%). Additionally, only 19% of DENV infections in humans and mosquitoes at surrounding houses were serotypically matched, while 81% of infections were serotypically mismatched, suggesting that mosquitoes outside the residence may be an important factor of endemic dengue transmission. Phylogenetic analyses based on envelope gene sequences showed the genotype I of both DENV-1 and DENV-4, and co-circulation of the Cosmopolitan and Asian I genotypes of DENV-2. These strains were closely related to concurrent strains in other parts of Thailand and also similar to strains in previous epidemiological profiles in Thailand and elsewhere in Southeast Asia. These findings highlight genomic data of DENV in this region and suggest that people's movement in urban environments may result in mosquitoes far away from the residential area being key determinants of DENV epidemic dynamics.


Asunto(s)
Virus del Dengue/genética , Dengue/transmisión , Adolescente , Adulto , Anciano , Animales , Estudios de Casos y Controles , Niño , Preescolar , Culicidae , Epidemias , Femenino , Genotipo , Geografía , Humanos , Lactante , Recién Nacido , Funciones de Verosimilitud , Masculino , Persona de Mediana Edad , Filogenia , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , Tailandia/epidemiología , Adulto Joven
14.
Trop Med Infect Dis ; 6(3)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34564546

RESUMEN

Dengue is an arboviral disease highly endemic in Bangkok, Thailand. To characterize the current genetic diversity of dengue virus (DENV), we recruited patients with suspected DENV infection at the Hospital for Tropical Diseases, Bangkok, during 2018-2020. We determined complete nucleotide sequences of the DENV envelope region for 111 of 276 participant serum samples. All four DENV serotypes were detected, with the highest proportion being DENV-1. Although all DENV-1 sequences were genotype I, our DENV-1 sequences were divided into four distinct clades with different distributions in Asian countries. Two genotypes of DENV-2 were identified, Asian I and Cosmopolitan, which were further divided into two and three distinct clades, respectively. In DENV-3, in addition to the previously dominant genotype III, a cluster of 6 genotype I viruses only rarely reported in Thailand was also observed. All of the DENV-4 viruses belonged to genotype I, but they were separated into three distinct clades. These results indicated that all four serotypes of DENV with multiple genotypes and/or clades co-circulate in Bangkok. Continuous investigation of DENV is warranted to further determine the relationship between DENV within Thailand and neighboring countries in Southeast Asia and Asia.

15.
Trop Med Infect Dis ; 6(3)2021 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-34449752

RESUMEN

Dengue is an overlooked tropical disease for which billions of people are at risk. The disease, caused by a Flavivirus with four distinct serotypes, is transmitted primarily by urban Aedes mosquito species. The infection leads to a spectrum of clinical manifestations, with the majority being asymptomatic. Primary dengue fever and, to a greater extent, a subsequent infection with a different serotype is associated with increased severity. Increased global travel and recreational tourism expose individuals naïve to the dengue viruses, the most common arboviral infections among travelers. We describe a cluster of possible primary acute dengue infections in a group of 12 individuals who presented to Bangkok Hospital for Tropical Diseases in 2017. Infection was confirmed by dengue NS1 antigen and multiplex real-time RT-PCR. Nine individuals required hospitalization, and four developed dengue warning signs. Leukocytes, neutrophils, and platelets declined towards defervescence and were negatively correlated with day of illness. Six clinical isolates were identified as dengue serotype-1, with 100% nucleotide identity suggesting that these patients were infected with the same virus.

16.
Am J Trop Med Hyg ; 105(4): 946-954, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34339379

RESUMEN

The chikungunya virus is an arthritogenic arbovirus that has re-emerged in many tropical and subtropical regions, causing explosive outbreaks. This re-emergence is due to a genomic polymorphism that has increased the vector susceptibility of the virus. The majority of those infected with chikungunya virus exhibit symptoms of fever, rash, and debilitating polyarthralgia or arthritis. Symptoms can persist for weeks, and patients can relapse months later. Fatalities are rare, but individuals of extreme age can develop severe infection. Here, we describe the 2019 outbreak, the second-largest since the virus re-emerged in the Maldives after the 2004 Indian Ocean epidemic, in which a total of 1,470 cases were reported to the Health Ministry. Sixty-seven patients presenting at the main referral tertiary care hospital in the Maldives capital with acute undifferentiated illness were recruited following a negative dengue serology. A novel point-of-care antigen kit was used to screen suspected cases, 50 of which were subsequently confirmed using real-time reverse transcription-polymerase chain reaction. We describe the genotype and polymorphism of Maldives chikungunya virus using phylogenetic analysis. All isolates were consistent with the East Central South African genotype of the Indian Ocean lineage, with a specific E1-K211E mutation. In addition, we explored the clinical and laboratory manifestations of acute chikungunya in children and adults, of which severe infection was found in some children, whereas arthritis primarily occurred in adults. Arthritides in adults occurred irrespective of underlying comorbidities and were associated with the degree of viremia.


Asunto(s)
Fiebre Chikungunya/epidemiología , Virus Chikungunya/genética , Brotes de Enfermedades , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Islas del Oceano Índico/epidemiología , Masculino , Persona de Mediana Edad , Filogenia
17.
Sci Rep ; 11(1): 12354, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117329

RESUMEN

Dengue virus (DENV) causes dengue fever (DF) and dengue hemorrhagic fever in humans. Some DF patients suddenly develop severe symptoms around the defervescent period. Although the pathogenic mechanism of the severe symptoms has not been fully elucidated, the viremia level in the early phase has been shown to correlate with the disease severity. One of the hypotheses is that a phenomenon called antibody-dependent enhancement (ADE) of infection leads to high level of viremia. To examine the plausibility of this hypothesis, we examined the relationship between in vitro ADE activity and in vivo viral load quantity in six patients with dengue diseases. Blood samples were collected at multiple time points between the acute and defervescent phases, and the balance between neutralizing and enhancing activities against the autologous and prototype viruses was examined. As the antibody levels against DENV were rapidly increased, ADE activity was decreased over time or partially maintained against some viruses at low serum dilution. In addition, positive correlations were observed between ADE activity representing in vitro progeny virus production and viremia levels in patient plasma samples. The measurement of ADE activity in dengue-seropositive samples may help to predict the level of viral load in the subsequent DENV infection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Dengue/virología , Carga Viral , Viremia/virología , Animales , Anticuerpos Antivirales/sangre , Chlorocebus aethiops , Dengue/sangre , Dengue/inmunología , Virus del Dengue/inmunología , Humanos , Células K562 , Células Vero , Viremia/inmunología
18.
Trop Med Infect Dis ; 6(2)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921055

RESUMEN

The Chikungunya virus is a re-emerging mosquito-borne alphavirus. Outbreaks are unpredictable and explosive in nature. Fever, arthralgia, and rash are common symptoms during the acute phase. Diagnostic tests are required to differentiate chikungunya virus from other co-circulating arboviruses, as symptoms can overlap, causing a dilemma for clinicians. Arthritis is observed during the sub-acute and chronic phases, which can flare up, resulting in increased morbidity that adversely affects the activities of daily living. During the 2019 chikungunya epidemic in Thailand, cases surged in Bangkok in the last quarter of the year. Here, we demonstrate the chronic sequelae of post-chikungunya arthritis in one of our patients one year after the initial infection. An inflammatory process involving edema, erythema, and tenderness to palpation of her fingers' flexor surfaces was observed, with positive chikungunya IgG and negative IgM tests and antigen. The condition produced stiffness in the patient's fingers and limited their range of motion, adversely affecting daily living activities. Resolution of symptoms was observed with a short course of an anti-inflammatory agent. More research is required to determine whether sanctuaries enable chikungunya virus to evade the host immune response and remain latent, flaring up months later and triggering an inflammatory response that causes post-chikungunya arthritis.

19.
Trop Med Infect Dis ; 6(1)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494514

RESUMEN

Chikungunya virus is an Alphavirus belonging to the family Togaviridae that is transmitted to humans by an infected Aedes mosquito. Patients develop fever, inflammatory arthritis, and rash during the acute stage of infection. Although the illness is self-limiting, atypical and severe cases are not uncommon, and 60% may develop chronic symptoms that persist for months or even for longer durations. Having a distinct periodical epidemiologic outbreak pattern, chikungunya virus reappeared in Thailand in December 2018. Here, we describe a cohort of acute chikungunya patients who had presented to the Bangkok Hospital for Tropical Diseases during October 2019. Infection was detected by a novel antigen kit and subsequently confirmed by real-time RT-PCR using serum collected at presentation to the Fever Clinic. Other possible acute febrile illnesses such as influenza, dengue, and malaria were excluded. We explored the sequence of clinical manifestations at presentation during the acute phase and associated the viral load with the clinical findings. Most of the patients were healthy individuals in their forties. Fever and arthralgia were the predominant clinical manifestations found in this patient cohort, with a small proportion of patients with systemic symptoms. Higher viral loads were associated with arthralgia, and arthralgia with the involvement of the large joints was more common in female patients.

20.
Viruses ; 12(11)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213040

RESUMEN

In recent decades, chikungunya virus (CHIKV) has become geographically widespread. In 2004, the CHIKV East/Central/South African (ECSA) genotype moved from Africa to Indian ocean islands and India followed by a large epidemic in Southeast Asia. In 2013, the CHIKV Asian genotype drove an outbreak in the Americas. Since 2016, CHIKV has re-emerged in the Indian subcontinent and Southeast Asia. In the present study, CHIKVs were obtained from Bangladesh in 2017 and Thailand in 2019, and their nearly full genomes were sequenced. Phylogenetic analysis revealed that the recent CHIKVs were of Indian Ocean Lineage (IOL) of genotype ECSA, similar to the previous outbreak. However, these CHIKVs were all clustered into a new distinct sub-lineage apart from the past IOL CHIKVs, and they lacked an alanine-to-valine substitution at position 226 of the E1 envelope glycoprotein, which enhances CHIKV replication in Aedes albopictus. Instead, all the re-emerged CHIKVs possessed mutations of lysine-to-glutamic acid at position 211 of E1 and valine-to-alanine at position 264 of E2. Molecular clock analysis suggested that the new sub-lineage CHIKV was introduced to Bangladesh around late 2015 and Thailand in early 2017. These results suggest that re-emerged CHIKVs have acquired different adaptations than the previous CHIKVs.


Asunto(s)
Fiebre Chikungunya/epidemiología , Virus Chikungunya/clasificación , Virus Chikungunya/genética , Brotes de Enfermedades , Genotipo , Filogenia , Aedes/virología , Sustitución de Aminoácidos , Animales , Bangladesh/epidemiología , Genoma Viral , Humanos , Mosquitos Vectores/virología , Tailandia/epidemiología , Proteínas del Envoltorio Viral/genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...